А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я Алгебра БуляАлгебра Буля - — исторически первый раздел математической логики, разработанный ирландским логиком и математиком Дж. Булем в середине XIX в. Буль применил алгебраические методы для решения логических задач и сформулировал на языке алгебры некоторые фундаментальные законы мышления. Буль представляет логику как алгебру классов (будем обозначать их символами А, В, С,...). Основными операциями в А. Б. являются: сложение классов AÈ.B; умножение классов АÇВ; дополнение класса А'. Свойства этих операций описываются следующими аксиомами: la. AÈ(BÈC)=(AÈB) ÈC — ассоциативность сложения; 16. AÇ(BÇC)= (AÇВ) ÈC — ассоциативность умножения; 2a.AÈB= BÈA — коммуникативность сложения; 2б.АÇВ =ВÇА — коммуникативность умножения; 3a.AÈ(ВÇС)= =(AÈB) Ç(AÈC) — дистрибутивность сложения относительно умножения; 36.AÇ(BÈC)==(AÇB) È(AÇC) — дистрибутивность умножения относительно сложения. В А. Б. существуют два элемента 0 и 1, операции с которыми подчиняются следующим соотношениям: AÈ0=A; AÇ1=A; AÈA'=1; AÇA'=0. Характерная особенность А.Б. заключается в том, что в ней отсутствуют коэффициенты и показатели степеней. Сумма двух А равна А: АÈА=А, а не 2А, как в обычной алгебре. Точно так же и произведение двух A равно A: АÇА=А, а не A2. Важным законом А. Б. является принцип двойственности, согласно которому если в некотором справедливом равенстве мы заменим все вхождения È на Ç и Ç на È, 1 на 0 и 0 на 1, то получим равенство, двойственное первому и также справедливое. Примерами двойственных равенств являются приведенные выше аксиомы. А.Б. широко применяется при проектировании и проверке электрических схем, в которых используются реле, работающие по принципу «да - нет», при программировании и проектировании ЭВМ, в операциях с переключателями, сигналами, схемами. В современной математической логике этот раздел значительно усовершенствован и разрабатывается как теория булевых алгебр, в том числе как алгебра множеств, алгебра высказываний и т. п. В области традиционной логики соотношения А. Б. часто используются для иллюстрации и прояснения отношений между объемами понятий.
Другие термины: |
Архитектурный словарь Бизнес словарь Биографический словарь Большой энциклопедический словарь Исторический словарь Медицинский словарь Морской словарь Политический словарь Психологическая энциклопедия Психологический словарь Религиозный словарь Сексологический словарь Социологический словарь Строительный словарь Философский словарь Финансовый словарь Экономический словарь Этнографический словарь Юридический словарь Словарь воровского жаргона Словарь Даля Словарь Ефремовой Словарь имён Словарь компьютерного жаргона Словарь логики Словарь мер и весов Словарь нумизмата Словарь Ожегова Словарь русских фамилий Словарь символов Словарь синонимов |
EncBook.ru - словари и энциклопедии |